DATA SCIENCE AND MACHINE LEARNING
Machine learning (ML) is a type of artificial intelligence (AI) that allows machines to learn and improve from data without being explicitly programmed. ML uses algorithms to analyze data, identify patterns, and make decisions.
Private Course
Please sign in to contact responsible
Responsible | gavireddy hruthik |
---|---|
Last Update | 03/06/2025 |
Completion Time | 1 day 6 hours 48 minutes |
Members | 39 |
Advanced
-
Data Science Full Course1Lessons · 1 day 1 hr
-
Data Science Full Course - Complete Data Science Course IBM
-
-
Welcome to the Python for Data Science & ML bootcamp!1Lessons · 1 min
-
Welcome to the Python for Data Science & ML bootcamp!
-
-
Python A Brief Overview.1Lessons · 1 min
-
Python A Brief Overview.
-
-
The Python Installation Procedure1Lessons · 2 mins
-
The Python Installation Procedure
-
-
What Jupyter is.1Lessons · 1 min
-
What Jupyter is.
-
-
Set up Anaconda on Different Operating Systems1Lessons · 4 mins
-
Set up Anaconda on Different Operating Systems
-
-
How to integrate Python into Jupyter1Lessons · 1 min
-
How to integrate Python into Jupyter
-
-
Handling Directories in Jupyter Notebook.1Lessons · 3 mins
-
Handling Directories in Jupyter Notebook.
-
-
Input & Output1Lessons · 2 mins
-
Input & Output
-
-
Working with different datatypes1Lessons · 1 min
-
Working with different datatypes
-
-
Variables1Lessons · 2 mins
-
Variables
-
-
Arithmetic Operators1Lessons · 2 mins
-
Arithmetic Operators
-
-
Comparison Operators1Lessons · 1 min
-
Comparison Operators
-
-
Logical Operators1Lessons · 3 mins
-
Logical Operators
-
-
Conditional statements1Lessons · 2 mins
-
Conditional statements
-
-
Loops1Lessons · 4 mins
-
Loops
-
-
Sequences Part 1 Lists1Lessons · 3 mins
-
Sequences Part 1 Lists
-
-
Sequences Part 2 Dictionaries1Lessons · 3 mins
-
Sequences Part 2 Dictionaries
-
-
Sequences Part 3 Tuples1Lessons · 1 min
-
Sequences Part 3 Tuples
-
-
Functions Part 1 Built-in Functions1Lessons · 1 min
-
Functions Part 1 Built-in Functions
-
-
Functions Part 2 User-defined Functions1Lessons · 3 mins
-
Functions Part 2 User-defined Functions
-
-
Completing Library Setup1Lessons · 1 min
-
Completing Library Setup
-
-
Library Importing1Lessons · 2 mins
-
Library Importing
-
-
Pandas A Data Science Library1Lessons · 1 min
-
Pandas A Data Science Library
-
-
NumPy A Data Science Library1Lessons · 1 min
-
NumPy A Data Science Library
-
-
NumPy vs Pandas1Lessons · 1 min
-
NumPy vs Pandas
-
-
Matplotlib Library for Data Science1Lessons · 1 min
-
Matplotlib Library for Data Science
-
-
Seaborn Library for Data Science1Lessons · 1 min
-
Seaborn Library for Data Science
-
-
Intro to NumPy arrays1Lessons · 1 min
-
Intro to NumPy arrays
-
-
Creating NumPy arrays1Lessons · 6 mins
-
Creating NumPy arrays
-
-
Indexing NumPy arrays1Lessons · 6 mins
-
Indexing NumPy arrays
-
-
Array shape1Lessons · 1 min
-
Array shape
-
-
Iterating Over NumPy Arrays1Lessons · 5 mins
-
Iterating Over NumPy Arrays
-
-
Basic NumPy arrays zeros()1Lessons · 2 mins
-
Basic NumPy arrays zeros()
-
-
Basic NumPy arrays ones()1Lessons · 1 min
-
Basic NumPy arrays ones()
-
-
Basic NumPy arrays full()1Lessons · 1 min
-
Basic NumPy arrays full()
-
-
Adding a scalar1Lessons · 2 mins
-
Adding a scalar
-
-
Subtracting a scalar1Lessons · 1 min
-
Subtracting a scalar
-
-
Multiplying by a scalar1Lessons · 1 min
-
Multiplying by a scalar
-
-
Dividing by a scalar1Lessons · 1 min
-
Dividing by a scalar
-
-
Raise to a power1Lessons · 1 min
-
Raise to a power
-
-
Transpose1Lessons · 1 min
-
Transpose
-
-
Element-wise addition1Lessons · 2 mins
-
Element-wise addition
-
-
Element-wise subtraction1Lessons · 1 min
-
Element-wise subtraction
-
-
Element-wise multiplication1Lessons · 1 min
-
Element-wise multiplication
-
-
Element-wise division1Lessons · 1 min
-
Element-wise division
-
-
Matrix multiplication1Lessons · 2 mins
-
Matrix multiplication
-
-
Statistics1Lessons · 3 mins
-
Statistics
-
-
What is a Python Pandas DataFrame1Lessons · 1 min
-
What is a Python Pandas DataFrame
-
-
What is a Python Pandas Series1Lessons · 1 min
-
What is a Python Pandas Series
-
-
DataFrame vs Series1Lessons · 1 min
-
DataFrame vs Series
-
-
Creating a DataFrame using lists1Lessons · 3 mins
-
Creating a DataFrame using lists
-
-
Creating a DataFrame using a dictionary1Lessons · 1 min
-
Creating a DataFrame using a dictionary
-
-
Loading CSV data into python1Lessons · 2 mins
-
Loading CSV data into python
-
-
Changing the Index Column1Lessons · 1 min
-
Changing the Index Column
-
-
Inplace1Lessons · 1 min
-
Inplace
-
-
Examining the DataFrame Head & Tail1Lessons · 1 min
-
Examining the DataFrame Head & Tail
-
-
Statistical summary of the DataFrame1Lessons · 1 min
-
Statistical summary of the DataFrame
-
-
Slicing rows using bracket operators1Lessons · 1 min
-
Slicing rows using bracket operators
-
-
Indexing columns using bracket operators1Lessons · 1 min
-
Indexing columns using bracket operators
-
-
Boolean list1Lessons · 1 min
-
Boolean list
-
-
Filtering rows using & and operators1Lessons · 2 mins
-
Filtering rows using & and operators
-
-
Filtering data using loc()1Lessons · 4 mins
-
Filtering data using loc()
-
-
Filtering data using iloc().1Lessons · 2 mins
-
Filtering data using iloc().
-
-
Adding and deleting rows and columns1Lessons · 3 mins
-
Adding and deleting rows and columns
-
-
Sorting Values1Lessons · 2 mins
-
Sorting Values
-
-
Exporting and saving pandas DataFrames1Lessons · 2 mins
-
Exporting and saving pandas DataFrames
-
-
Concatenating DataFrames1Lessons · 1 min
-
Concatenating DataFrames
-
-
groupby()1Lessons · 3 mins
-
groupby()
-
-
Introduction to Data Cleaning1Lessons · 1 min
-
Introduction to Data Cleaning
-
-
Quality of Data1Lessons · 1 min
-
Quality of Data
-
-
Examples of Anomalies1Lessons · 1 min
-
Examples of Anomalies
-
-
Median-based Anomaly Detection1Lessons · 3 mins
-
Median-based Anomaly Detection
-
-
Mean-based anomaly detection1Lessons · 3 mins
-
Mean-based anomaly detection
-
-
Z-score-based Anomaly Detection1Lessons · 3 mins
-
Z-score-based Anomaly Detection
-
-
Interquartile Range for Anomaly Detection1Lessons · 5 mins
-
Interquartile Range for Anomaly Detection
-
-
Dealing with missing values1Lessons · 6 mins
-
Dealing with missing values
-
-
Regular Expressions1Lessons · 7 mins
-
Regular Expressions
-
-
Feature Scaling1Lessons · 3 mins
-
Feature Scaling
-
-
Introduction1Lessons · 1 min
-
Introduction
-
-
What is Exploratory Data Analysis1Lessons · 1 min
-
What is Exploratory Data Analysis
-
-
Univariate Analysis1Lessons · 2 mins
-
Univariate Analysis
-
-
Univariate Analysis Continuous Data1Lessons · 6 mins
-
Univariate Analysis Continuous Data
-
-
Univariate Analysis Categorical Data1Lessons · 2 mins
-
Univariate Analysis Categorical Data
-
-
Bivariate analysis Continuous & Continuous1Lessons · 5 mins
-
Bivariate analysis Continuous & Continuous
-
-
Bivariate analysis Categorical & Categorical1Lessons · 3 mins
-
Bivariate analysis Categorical & Categorical
-
-
Bivariate analysis Continuous & Categorical1Lessons · 2 mins
-
Bivariate analysis Continuous & Categorical
-
-
Detecting Outliers1Lessons · 6 mins
-
Detecting Outliers
-
-
Categorical Variable Transformation1Lessons · 4 mins
-
Categorical Variable Transformation
-
-
Introduction to Time Series1Lessons · 2 mins
-
Introduction to Time Series
-
-
Getting stock data using yfinance1Lessons · 3 mins
-
Getting stock data using yfinance
-
-
Converting a Dataset into Time Series1Lessons · 4 mins
-
Converting a Dataset into Time Series
-
-
Working with Time Series1Lessons · 4 mins
-
Working with Time Series
-
-
Time Series Data Visualization with Python1Lessons · 3 mins
-
Time Series Data Visualization with Python
-
-
Setting Up Matplotlib1Lessons · 1 min
-
Setting Up Matplotlib
-
-
Plotting Line Plots using Matplotlib1Lessons · 2 mins
-
Plotting Line Plots using Matplotlib
-
-
Title, Labels & Legend1Lessons · 7 mins
-
Title, Labels & Legend
-
-
Plotting Histograms1Lessons · 1 min
-
Plotting Histograms
-
-
Plotting Bar Charts1Lessons · 2 mins
-
Plotting Bar Charts
-
-
Plotting Pie Charts1Lessons · 3 mins
-
Plotting Pie Charts
-
-
Plotting Scatter Plots1Lessons · 6 mins
-
Plotting Scatter Plots
-
-
Plotting Log Plots1Lessons · 1 min
-
Plotting Log Plots
-
-
Plotting Polar Plots1Lessons · 2 mins
-
Plotting Polar Plots
-
-
Handling Dates1Lessons · 1 min
-
Handling Dates
-
-
Creating multiple subplots in one figure1Lessons · 3 mins
-
Creating multiple subplots in one figure
-
-
Why do we need machine learning1Lessons · 2 mins
-
Why do we need machine learning
-
-
Machine Learning Use Cases1Lessons · 2 mins
-
Machine Learning Use Cases
-
-
Approaches to Machine Learning1Lessons · 1 min
-
Approaches to Machine Learning
-
-
What is Supervised learning1Lessons · 1 min
-
What is Supervised learning
-
-
What is Unsupervised learning1Lessons · 1 min
-
What is Unsupervised learning
-
-
Supervised learning vs Unsupervised learning1Lessons · 4 mins
-
Supervised learning vs Unsupervised learning
-
-
Introduction to regression1Lessons · 2 mins
-
Introduction to regression
-
-
How Does Linear Regression Work1Lessons · 2 mins
-
How Does Linear Regression Work
-
-
Line representation1Lessons · 1 min
-
Line representation
-
-
Implementation in python Importing libraries & datasets1Lessons · 2 mins
-
Implementation in python Importing libraries & datasets
-
-
Implementation in python Distribution of the data1Lessons · 2 mins
-
Implementation in python Distribution of the data
-
-
Implementation in python Creating a linear regression object1Lessons · 3 mins
-
Implementation in python Creating a linear regression object
-
-
Understanding Multiple linear regression1Lessons · 2 mins
-
Understanding Multiple linear regression
-
-
Exploring the dataset2Lessons · 5 mins
-
Exploring the dataset
-
Exploring the dataset
-
-
Encoding Categorical Data1Lessons · 5 mins
-
Encoding Categorical Data
-
-
Splitting data into Train and Test Sets1Lessons · 2 mins
-
Splitting data into Train and Test Sets
-
-
Training the model on the Training set1Lessons · 1 min
-
Training the model on the Training set
-
-
Predicting the Test Set results1Lessons · 3 mins
-
Predicting the Test Set results
-
-
Evaluating the performance of the regression model1Lessons · 1 min
-
Evaluating the performance of the regression model
-
-
Root Mean Squared Error in Python1Lessons · 2 mins
-
Root Mean Squared Error in Python
-
-
Introduction to classification1Lessons · 1 min
-
Introduction to classification
-
-
K-Nearest Neighbors algorithm1Lessons · 1 min
-
K-Nearest Neighbors algorithm
-
-
Example of KNN1Lessons · 1 min
-
Example of KNN
-
-
K-Nearest Neighbours (KNN) using python1Lessons · 1 min
-
K-Nearest Neighbours (KNN) using python
-
-
Importing required libraries1Lessons · 1 min
-
Importing required libraries
-
-
Importing the dataset1Lessons · 2 mins
-
Importing the dataset
-
-
Importing the KNN classifier1Lessons · 2 mins
-
Importing the KNN classifier
-
-
Results prediction & Confusion matrix1Lessons · 2 mins
-
Results prediction & Confusion matrix
-
-
Introduction to decision trees1Lessons · 1 min
-
Introduction to decision trees
-
-
What is Entropy1Lessons · 1 min
-
What is Entropy
-
-
Decision tree structure1Lessons · 1 min
-
Decision tree structure
-
-
Importing libraries & datasets1Lessons · 1 min
-
Importing libraries & datasets
-
-
Results Prediction & Accuracy1Lessons · 3 mins
-
Results Prediction & Accuracy
-
-
Implementation steps1Lessons · 1 min
-
Implementation steps
-
-
Splitting data into Train and Test Sets.1Lessons · 1 min
-
Splitting data into Train and Test Sets.
-
-
Pre-processing1Lessons · 2 mins
-
Pre-processing
-
-
Training the model1Lessons · 1 min
-
Training the model
-
-
Logistic Regression vs Linear Regression1Lessons · 2 mins
-
Logistic Regression vs Linear Regression
-
-
Introduction to clustering1Lessons · 1 min
-
Introduction to clustering
-
-
Use cases1Lessons · 1 min
-
Use cases
-
-
K-Means Clustering Algorithm1Lessons · 1 min
-
K-Means Clustering Algorithm
-
-
Elbow method1Lessons · 2 mins
-
Elbow method
-
-
Steps of the Elbow method1Lessons · 1 min
-
Steps of the Elbow method
-
-
Implementation in python1Lessons · 4 mins
-
Implementation in python
-
-
Hierarchical clustering1Lessons · 1 min
-
Hierarchical clustering
-
-
Density-based clustering1Lessons · 2 mins
-
Density-based clustering
-
-
Implementation of k-means clustering in python1Lessons · 1 min
-
Implementation of k-means clustering in python
-
-
Visualizing the dataset1Lessons · 2 mins
-
Visualizing the dataset
-
-
Defining the classifier1Lessons · 2 mins
-
Defining the classifier
-
-
3D Visualization of the clusters1Lessons · 1 min
-
3D Visualization of the clusters
-
-
3D Visualization of the predicted values1Lessons · 3 mins
-
3D Visualization of the predicted values
-
-
Number of predicted clusters1Lessons · 2 mins
-
Number of predicted clusters
-
-
Collaborative Filtering in Recommender Systems1Lessons · 1 min
-
Collaborative Filtering in Recommender Systems
-
-
Content-based Recommender System1Lessons · 1 min
-
Content-based Recommender System
-
-
Merging datasets into one dataframe1Lessons · 1 min
-
Merging datasets into one dataframe
-
-
Sorting by title and rating1Lessons · 4 mins
-
Sorting by title and rating
-
-
Histogram showing number of ratings1Lessons · 1 min
-
Histogram showing number of ratings
-
-
Frequency distribution1Lessons · 1 min
-
Frequency distribution
-
-
Jointplot of the ratings and number of ratings1Lessons · 1 min
-
Jointplot of the ratings and number of ratings
-
-
Data pre-processing1Lessons · 2 mins
-
Data pre-processing
-
-
Sorting the most-rated movies1Lessons · 1 min
-
Sorting the most-rated movies
-
-
Grabbing the ratings for two movies1Lessons · 1 min
-
Grabbing the ratings for two movies
-
-
Correlation between the most-rated movies1Lessons · 2 mins
-
Correlation between the most-rated movies
-
-
Sorting the data by correlation1Lessons · 1 min
-
Sorting the data by correlation
-
-
Filtering out movies1Lessons · 1 min
-
Filtering out movies
-
-
Repeating the process for another movie1Lessons · 2 mins
-
Repeating the process for another movie
-
-
Conclusion1Lessons · 1 min
-
Conclusion
-